Short tricks औसत (average ) भाग 1
चलिये ये हम एक उदाहरण द्वारा समझने का प्रयास करते हैं, मान लीजिये कि आपके पास 50 आम हैं और आपको उन्हें 10 लोगों में बांटने को कहा जाता है, तो ज़रा सोच कर बताईये कितने आम प्रत्येक व्यक्ति को मिलेंगे, जी हाँ प्रत्येक व्यक्ति को 5 आम ही मिलेंगे, और यदि व्यक्ति 5 होते तो प्रत्येक को 10 आम मिलते, आपने प्रति व्यक्ति आम की संख्या निकाली, जो आपको मिली आमों की संख्या को लोगों की संख्या से विभाजित करने से, बस यही औसत है बस हमें प्रत्येक व्यक्ति पर राशि या जो भी हो निकालना होता है,
इस तरह के सवाल बडे ही सरल होते हैं इनमें सिर्फ और सिर्फ संख्याओं से सम्बंधित सवाल आते है, जैसे – कुछ संख्याओं का औसत निकालने को दिया जा सकता है, या औसत दिया होगा और संख्याओं का योग पूछ लिया जायेगा, चलिये अब देखें इस तरह के कुछ सवाल-
1. 1 से 19 तक की संख्याओं का औसत क्या होगा-
इसका सीधा सा सूत्र है- = n+1
2
= 19+1 =10
2
2. प्रथम 5 सम संख्याओं का औसत निकालो
सूत्र= (n+1)= 5+1= 6
i. परन्तु यदि दिया होता कि विषम संख्याओं का औसत निकालो
तब उत्तर होता = n =5
3. एक प्रकार का प्रश्न होता है जिसमें संख्याओं में बराबर अंतर होता है जिसे क्रमागत संख्याओं की सीरीज़ कहा जाता है, उनका औसत पूछा जाता है
जैसे- 5, 8, 11, 14, 17………47 का औसत निकालो,
इसका औसत निकालने के लिये बडा आसान सा सूत्र है, इसे याद कर लीजिये
= प्रथम संख्या + अंतिम संख्या
2
= 47+5
2
= 26 उत्तर
4. इसी प्रकार जो प्रश्न पूछे जाते हैं यहाँ सभी के सूत्र उपलब्ध कराये जा रहे हैं उसके बाद हम दूसरे प्रकार के प्रश्न देखेंगे
a. 1 से लेकर n तक सम संख्याओं का औसत
= अंतिम सम संख्या + 2
2
* यदि अंतिम संख्या सम है,
परंतु यदि विषम है
तो = अंतिम संख्या + 1
b. 1 से लेकर n तक विषम संख्याओं का औसत
इस तरह के प्रश्नों में हमें सिर्फ ये ज्ञात करना होता है कि 1 से लेकर n तक विषम संख्याओं की संख्या कितनी है और जैसा कि आप जानते हैं कि विषम संख्याओं का औसत ऐसी स्थिति में उनकी संख्या ही होती है
जैसे- 1 से 9 तक की विषम संख्याओं का औसत निकालो – या – 1 से 10 तक की संख्याओं का औसत निकालो
पहली स्थिति में हमें (9+1) में 2 से भाग देना है और उत्तर आ जायेगा और दूसरी स्थिति में हमें बस 10 को 2 से विभाजित करना है, क्योंकि आधी संख्यायें सम और आधी विषम होती हैं
c. प्राकृतिक संख्याओं के वर्गों का औसत-
= (n+1)(2n+1)
6
(जहाँ “n” अंतिम संख्या है)d. प्रथम प्राकृतिक संख्याओं के घनों का औसत= n(n+1)2
4
(जहाँ “n” अंतिम संख्या है)
1. किसी कक्षा के 30 छात्रों की औसत आयु 14 वर्ष है, यदि एक अध्यापक की भी आयु शामिल कर ली जाये तो औसत आयु 15 वर्ष हो जाती है अध्यापक की आयु ज्ञात कीजिये
= 45
2. चार व्यक्तियों का औसत वज़न 3 किलोग्राम बढ जाता है यदि 120 किलोग्राम वज़न वाले व्यक्ति के स्थान पर किसी और व्यक्ति को शामिल कर लिया जाता है?
3 . यदि कोई व्यक्ति किसी निश्चित दूरी को X कि0 मी0/ घंटा की रफ्तार से तथा उसी दूरी को Y किलोमीटर/घंटा की रफ्तार से तय करे तो उसकी औसत चाल क्या होगी ?
xy+yz+zx
4. तीन लडकों की औसत आयु 15 वर्ष है यदि उनकी आयु 3:5:7 के अनुपात में है, सबसे छोटे लडके की आयु क्या होगी ?
हल:
तीनों लडकों की कुल आयु होगी = 15 x 3 = 45 वर्ष
अब 45 वर्ष को 3 :5 : 7 के अनुपात में विभाजित कर लीजिये आपका उत्तर आ जायेगा
3+5+7
15
5. एक कक्षा के 40 छात्रों द्वारा प्राप्त अंको का औसत 86 है यदि 5 सर्वाधिक अंको को निकाल दिया जाये तो औसत एक अंक कम हो जाता है शीर्ष 5 छात्रों के औसत अंक बताइये ?
5
6. चार बहनों की औसत आयु 7 वर्ष है यदि माँ की आयु शामिल कर दी जाये तो औसत आयु 6 वर्ष बढ जाती है तो माँ की आयु होगी ?
सबसे पहले 4 बहनों की कुल आयु = 7 x 4 = 28
7. किक्रेट के एक खिलाडी का 10 पारियों का कुछ औसत था 11 वीं पारी में उसने 108 रन बनाये तथा इससे उसकी औसत रन संख्या में 6 की बृध्दि हो गई अब उनकी औसत रन संख्या कितनी है
n वी पारी = 11
8. एक किक्रेट मैच में 6 खिलाडीयों की औसत रन संख्या 36 थी यदि इनमें से एक खिलाडी ने 16 रन बनाये हो, तो शेष खिलाडीयों की औसत रन संख्या कितना है
TAGS-औसत गणित सूत्र,औसत pdf,औसत के प्रश्न,औसत के प्रश्न pdf,औसत सूत्र,औसत क्या है,औसत की परिभाषा,औसत का अर्थ,average example,average mean,average formula,average meaning in hindi,average thesaurus,average formula in math,average excel,what is the average weight,
Post a Comment
0 Comments